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A B S T R A C T   

Textile materials are one of the primary sources of microplastic pollution. The washing procedure is by far the 
most significant way that textile products release microplastic fibers (MPFs). Therefore, in this study, the effects 
of various textile raw materials (A acrylic, PA polyamide, PET polyester, RPET recycled polyester and PP 
polypropylene), fabric construction properties (woven, knitted), thickness and basis weight values on MPFs 
release at different washing stages (pre-washing, soaping/rinsing) were examined separately. To mimic the most 
popular home washing procedures, a 10-min pre-wash and a 35-min soaping/rinsing phase at 40 ◦C were 
selected for the washing procedure. Utilizing the Image J program on macroscopic images captured by a high- 
resolution SL. R camera, the microfibers collected by filtering the water have been visually counted. Accord
ing to the results, knitted fabrics released fewer MPFs than woven fabrics, with the woven acrylic sample (A3-w) 
exhibiting the highest release (2405 MPFs). The number of MPFs increased along with the thickness and weight 
of the fabric. Recycled polyester was found to release more MPFs than virgin polyester under the same conditions 
(1193 MPFs vs. 908 MPFs). This study demonstrates how recycled polyester, although initially an environ
mentally beneficial solution, can eventually become detrimental to the environment. Furthermore, it is known 
that the pre-washing procedure—which is optional—releases a lot more MPFs than the soaping and rinsing 
procedures, and that stopping this procedure will drastically lower the amount of MPFs incorporated into the 
water.   

1. Introduction 

The actual overall clothing system creates negative impacts on re
sources, environment, and society (McNeill & Moore, 2015). Textiles 
production is a significant source of microplastic fibers (MPFs) (Zhou 
et al., 2020; Deng et al., 2020; Lim et al., 2022; Palacios-Mateo et al., 
2021), the most common form of microplastics (Deng et al., 2020; 
Mishra et al., 2020; Geyer et al., 2022). MPFs are released from textiles 
not only during their use in air (Gasperi et al., 2018; Almroth et al., 
2018) but also in water due to household washing (Ellen MacArthur 
Foundation, 2017; (European Environment Agency, 2022)European 
Environment Agency, 2022; Napper & Thompson, 2016; Gaylarde et al., 
2021) and tumble drying (Pirc et al., 2016; O’Brien et al., 2020; 

Kärkkäinen & Sillanpää, 2021). Microplastics have been linked to po
tential negative impacts on the aquatic life (Yuan et al., 2022; Nguyen 
et al., 2019), can be vectors for other pollutants (Gaylarde et al., 2021; 
Singh et al., 2020; Alimi et al., 2017) and enter the food chain (Gaylarde 
et al., 2021; Zhang et al., 2020; Periyasamy & Tehrani-Bagha, 2022). 

Adopting materials and manufacturing procedures that prevent mi
crofiber shedding (Ellen MacArthur Foundation, 2017; European Envi
ronment Agency, 2022; Rathinamoorthy & Balasaraswathi 
Subramanian, 2020; Liu et al., 2021) will be crucial to reduce the 
environmental impacts of fashion industry. Synthetic fibers are main 
sources of primary MPFs released in the oceans (Mishra et al., 2020; 
IUCN, 2017; De Falco et al., 2019; Suaria et al., 2020; Acharya et al., 
2021), and there is urgent need to explore what happens during their 
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washing (Salvador Cesa et al., 2017). Previous literature investigated 
household washing, recording from 6,000,000 (Palacios-Mateo et al., 
2021) up to 18, 000, 000 MPFs (Galvão et al., 2020; De Falco et al., 
2017) emitted from a 5–6 kg laundry load. The release of microplastic 
fibers (MPFs) is intricately linked to various factors within the textile life 
cycle. Textile production and finishing processes play a crucial role in 
the generation of MPFs (Palacios-Mateo et al., 2021; De Falco et al., 
2017; De Falco et al., 2019), on the specific structure of the yarns 
(Salvador Cesa et al., 2017; Jönsson et al., 2018), the manner in which 
these yarns are transformed, either through machine knitting or 
weaving into fabrics, significantly influences MPF release and the age of 
the textiles is a contributing factor (Carney Almroth et al., 2018; Zam
brano et al., 2019). The amount of MPFs released during washing may 
be lower from tight structures (Yang et al., 2019; Rathinamoorthy and 
Balasaraswathi Subramanian, 2023; Rathinamoorthy & Balasaraswathi 
Subramanian, 2023), and from twisted yarns with long fibers (Pala
cios-Mateo et al., 2021), compared to yarns/fabrics made of short fibers 
(De Falco et al., 2017). Friction applied to clothes is the main factor (Lim 
et al., 2022), thus textiles’ features as high abrasion resistance (Rathi
namoorthy and Balasaraswathi Subramanian, 2023; Rathinamoorthy & 
Balasaraswathi Subramanian, 2023), low hairiness, and high yarn 
breaking strength (Yang et al., 2019) reduce MPFs loss during washing, 
as do softeners (Palacios-Mateo et al., 2021; Zambrano et al., 2019). 
Hand washing, compared to machine washing, seems to produce less 
MPFs (Wang et al., 2023). The effect of the type of synthetic fibers has 
been previously explored. Literature extensively studied polyester 
(Carney Almroth et al., 2018; Napper & Thompson, 2016; Pirc et al., 
2016; O’Brien et al., 2020; De Falco et al., 2017; De Falco et al., 2019a,b; 
Zambrano et al., 2019; Rathinamoorthy and Balasaraswathi Sub
ramanian, 2023; Rathinamoorthy & Balasaraswathi Subramanian, 
2023; Hernandez et al., 2017; Özkan & Gündoğdu, 2020; Vassilenko 
et al., 2017; Mondal et al., 2022) and polyamide (nylon) (Carney Alm
roth et al., 2018; De Falco et al., 2017; De Falco et al., 2018; De Falco 
et al., 2019a,b; Vassilenko et al., 2017; Mondal et al., 2022), the most 
common synthetic fibers adopted by textile industry (Schöpel & Stam
minger, 2019). Few studies involved acetate (Yang et al., 2019), acrylic 
(Carney Almroth et al., 2018), polypropylene (Palacios-Mateo et al., 
2021) and rayon (Zambrano et al., 2019). In overall, literature exploring 
MPFs release from synthetic fibers during washing provides results that 
are not often comparable (Salvador Cesa et al., 2017; Galvão et al., 
2020) as not obtained in standard conditions, or controversial about the 
influence of specific features of the washing cycle (load, duration, 
temperature, detergent, etc.) (Lim et al., 2022; Napper & Thompson, 
2016; Pirc et al., 2016; Periyasamy &Tehrani-Bagha, 2022; De Falco 
et al., 2017; Jönsson et al., 2018; Yang et al., 2019; Wang et al., 2023; 
Vassilenko et al., 2017; Belzagui et al., 2019). Many studies observed 
higher release of MPFs in the first phases of the washing cycle (Lim et al., 
2022; Napper & Thompson, 2016; Pirc et al., 2016; Periyasamy 
&Tehrani-Bagha, 2022; De Falco et al., 2019) especially from brush
ed/bleached (Periyasamy &Tehrani-Bagha, 2022) and aged fabrics 
(Carney Almroth et al., 2018; Hernandez et al., 2017; Hartline et al., 
2016), and using larger volumes of water (Kelly et al., 2019; Lant et al., 
2020). Literature results don’t agree about the effect of temperature, 
which enhanced MPFs emissions (Yang et al., 2019; Cotton et al., 2019) 
or not (Lim et al., 2022; Wang et al., 2023). Also, using a detergent 
increased MPFs release (O’Brien et al., 2020; Zambrano et al., 2019; 
Wang et al., 2023) or decreased it (Hernandez et al., 2017), or had no 
influence (Pirc et al., 2016); the type (powder or liquid) was significant 
(Xu et al., 2021), while detergent’s chemical composition prevailed on 
the type (Periyasamy &Tehrani-Bagha, 2022) or showed no influence 
(O’Brien et al., 2020). In the studies conducted, it has been observed that 
the lengths of microfibers released from textiles are approximately be
tween 100 and 850 μm (Hernandez et al., 2017; Cai et al., 2020). 
Notably, it is challenging to precisely measure the geometrical di
mensions of MPFs below approximately 4 μm using current analytical 
methods (Xiao et al., 2023). Moreover, literature usually provides 

results deriving from single replicates of the experiments (Pirc et al., 
2016; Salvador Cesa et al., 2017; (Ellen MacArthur Foundation, 2017) 
Ellen MacArthur Foundation, 2017; Palacios-Mateo et al., 2021; Gay
larde et al., 2021; Volgare et al., 2021; Vassilenko et al., 2021; European 
Environment Agency, 2022; Rathinamoorthy & Balasaraswathi Sub
ramanian, 2023). Several studies have investigated the connection be
tween the age of garments and the release of microfibers, yielding 
conflicting results. Some research (Napper and Thompson, 2016; Pirc 
et al., 2016; Sillanpää and Sainio, 2017; Athey et al., 2020; Cesa et al., 
2020) indicates that both new synthetic and natural garments release 
more microfibers compared to their older counterparts. On the contrary, 
Hernandez et al. (2017) found no significant influence of garment age on 
microfiber release. Hartline et al. (2016) reported a contradictory 
outcome, challenging previous findings that suggested higher mass 
release from mechanically aged garments using the same washing pro
tocol as new ones. Notably, garments subjected to a 24-h continuous 
wash showed increased mass release under the same washing conditions 
as new garments (Hartline et al., 2016). The study by Galvão et al. 
(2020) conducted research on worn clothes in a real-life environment 
and found significantly higher numbers of microplastic fibers (MPF) 
compared to previous studies with new clothes. Another factor consid
ered in microfiber release during laundering is the age of the clothing. 
Following the first wash, the quantity of microfibers released from 
laundry reaches a plateau (Zambrano et al., 2019; De Falco et al., 2019a, 
b; Carney Almroth et al., 2018; Napper & Thompson, 2016; Kelly et al., 
2019). 

The main knowledge gap of state-of-the-art literature is that there 
aren’t studies comparing in the same washing conditions the behavior of 
multiple synthetic fibers, also accounting different structural features. 
Compared to existing literature, this study has the following aims and 
elements of novelty: 1. Analysis of MPFs release from samples of new 
pure synthetic fibers (acrylic, polyamide, polyester, recycled polyester, 
and polypropylene) in a single washing cycle simulating household 
laundry (pre-washing and soaping&rinsing evaluated singularly) carried 
out in standard conditions (EN/ISO 105-C06:2010/A1M). 2. Analysis of 
the behavior of 10 fabric samples having different structures (4 knitted 
and 6 woven), thickness and basis weight, including 5 samples of 
polyester (4 virgin and 1 recycled), as well as polyamide, and also fibers 
less explored by literature, as acrylic (3 samples) and polypropylene. 

2. Materials and methods 

2.1. Methodology 

The methodology applied in this study was based on 4 consequent 
phases (Fig. 1): characterization of the fabric samples, washing tests, 
MPFs collection and counting, and data analysis. 

2.2. Materials 

10 fabric samples obtained directly from various companies were 
included in this study. Following the cutting of the fabrics into standard 
160 × 200 mm pieces, the edges of fabrics were intentionally burned to 
prevent microfibers from escaping the cut areas. These samples were 
made of different synthetic fibers such as acrylic, polyamide, polyester, 
recycled polyester, and polypropylene, and they exhibited various 
constructional parameters and colors, as detailed in Table 1. In details, 4 
samples of polyester (PET, 2 knitted and 2 woven), 1 sample of recycled 
polyester (RPET, woven), 3 samples of acrylic (A, 2 knitted and 1 
woven), 1 samples of polyamide (PA, woven) and 1 sample of poly
propylene (PP, woven). The fabric structure types of the considered 
samples were jersey (A1-k, A2-k), interlock (PET1-k), ribana (PET2-k), 
and plain (PET3-w, RPET-w, PA-w, A3-w, PET4-w, PP-w). While woven 
fabrics (A3-w, PES3-w, PES4-w, RPET-w, PA-w, PP-w) are structures 
formed by two different yarn systems interlacing each other at 90◦ di
rections (Gowayed, 2013), knitted fabrics (A1-k, A2-k, PES1-k, PES2-k) 
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are structures in which the fabric is produced by creating loops with a 
single yarn system (Fangueiro & Soutinho, 2011). 

2.3. Physical characterization 

The samples’ images were obtained with a high-resolution SL. R 
camera (Sony ILCE-7RM3 v 1.01). The characterization was as follows 
(Appendix, Figs. S1 and S2): (i) about the fabrics, the raw materials were 
identified through microscopy coupled with Fourier-transform infrared 
spectroscopy (micro-FTIR) (Shimadzu, AIM-9000). Thickness, expressed 
in mm, was measured using a digital thickness gage (Mitutoyo 0.01–150 
mm); basis weight, expressed in g/m2, was calculated by dividing the 
fabric weight by the area of the fabric through an analytical balance 
(KERN ABJ220-4NM); (ii) about the yarn, diameter and structure were 
analyzed through energy dispersive X-ray scanning electron microscopy 
(EDX/SEM) (FEI Inspect S). 

2.4. Standardized washing tests 

The washing tests were carried out according to EN/ISO 105- 
C06:2010/A1M standard though a micro-Deval apparatus (4.40 L vol
ume), instead of in a Launder-Ometer (0.55 L volume) as requested by 
the standard, adapting the washing conditions (Appendix, Table S1). 
The washing cycle was performed on 160 × 200 mm fabric samples 
(weight was between 2.4 and 13.76 g depending on the basis weight) at 
40 ◦C involving two phases, e.g., 10 min pre-washing and 35 min 
soaping&rinsing. Liquid detergent (Marseille soap) was used in the 
soaping&rinsing phase. 40 ◦C temperature, less than 1 h duration, and 
liquid detergent are the conditions recommended by literature for sus
tainable household laundry (Dewaele et al., 2006; Eberle et al., 2007; 
Schages et al., 2020; Tomšič et al., 2023). The wastewater (1.2 L) was 
collected separately after each phase. 

2.5. Collection and analysis of microplastic fibers 

The wastewater samples have been vacuum filtered on 0.7 μm pore- 
size glass fiber filters (Whatman, Ø 47 mm), then dried at 40 ◦C for 12 h. 
MPFs have been identified as fibers having diameter below 50 μm, 
length in the range 1 μm–5 mm and length-to-diameter ratio above 3 
((Carney Almroth et al., 2018)Almroth et al., 2018; Salvador Cesa et al., 
2017; Zambrano et al., 2019; Hernandez et al., 2017; Liu et al., 2019). 
The details on the pre-treatment of the filters and on MPFs’ counting are 
in the Appendix (Figs. S3 and S4). MPFs collected from light-coloured 
samples A1-k, PET2-k, PET3-w, PA-w were dyed with few drops of 

Nile red (72,485-100 MG Sigma Aldrich, 1000 μg/mL in acetone) (Shruti 
et al., 2021; Maes et al., 2017) and dried for 2 h. MPFs have been visually 
counted (Ivleva, 2021) through ImageJ software applied to macroscopic 
images obtained with a high-resolution SL. R camera (Sony ILCE-7RM3 v 
1.01) under normal and UV light. 

To prevent contamination, all the experimental work was done while 
wearing nitrile gloves and cotton lab coats. A glass beaker was used to 
collect wastewater. Running an empty washing cycle at 40 ◦C for 30 min 
following the conclusion of each washing test helped to reduce cross- 
contamination of microfibers between washes. For every washing 
cycle, distilled water was utilized to avoid contamination. During the 
washing sequence, samples of different colors were selected consecu
tively to prevent mixing samples of the same color and to avoid affecting 
subsequent washes. Only the counting, insertion into the filter holder, 
separation from the filter holder, and storage in a Petri dish exposed the 
filter to potential air contamination during the filtering process. 

2.6. Data analysis 

The performances of the washing tests have been assessed through 
the following metrics: total MPFs released (Number of fibers), release of 
MPFs per weight of fabric (MPFs/g), release of MPFs per weight of fabric 
and minute of washing (MPFs/g.min) to account the different samples, 
and release of MPFs pre-washing and soaping&rinsing to account the 
different phases of washing cycle. The experimental results have been 
statistically analyzed to identify potential correlations by applying 
Pearson’s bivariate correlation test on Excel (Microsoft Office) and 
Principal Component Analysis (PCA) via MATLAB PCA toolbox. 

3. Results and discussion 

3.1. Physical characterization of the samples 

The thickness and the basis weight values of the samples (Fig. 2) 
ranged between 0.05 and 0.8 mm and 75–430 g/m2, respectively. 

Micro-FTIR analysis results showed that each fabric composed of 
100% pure polymers (Appendix, Fig. S1). The results of SEM/IMAGE J 
analyses (Table 2) indicated that the fibers’ diameter ranged 10–20 μm 
for knitted fabrics and 10–22.5 μm for woven fabrics, independently of 
thickness and basis weight. Fiber and yarn diameters were measured 
from 10 different regions and the average values were given with their 
standard deviations. 

Fig. 1. Outline of the applied methodology.  
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Table 1 
List and main features of the fabric samples.    

Fabric type 

Knitted (k) Woven (w) 

Synthetic fiber Acrylic (A) 

0.5 mm 0.5 mm 0.5 mm 
Sample ID: A1-k 
Fabric structure: Jersey 

Sample ID: A2-K 
Fabric structure: Jersey 

Sample ID: A3-w 
Fabric structure: Plain 

Polyester (PET) 

0.5 mm 0.5 mm 0.5 mm 0.5 mm 
Sample ID: PET1-k 
Fabric structure: Interlock 

Sample ID: PET2-k 
Fabric structure: Ribana 

Sample ID: PET3-w 
Fabric structure: Plain 

Sample ID: PET4-w 
Fabric structure: Plain 

Recycled polyester (RPET)  

0.5 mm  
Sample ID: RPET-w 
Fabric structure: Plain 

(continued on next page) 
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Table 1 (continued )   

Fabric type 

Knitted (k) Woven (w) 

Polyamide (PA)  

0.5 mm  
Sample ID: PA-w 
Fabric structure: Plain 

Polypropylene (PP)  

0.5 mm  
Sample ID: PP-w 
Fabric structure: Plain  
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3.2. Washing tests 

In Table 3, the total number of MPFs released from the pre-washing 
and soaping&rinsing stages is presented, along with the release of MPFs 
per weight of fabric (MPFs/g) and per weight of fabric and minute of 
washing (MPFs/g.min) to accommodate the various samples. Pearson 
correlation tests had been performed to measure linear correlation 
among the data sets. The release of MPFs per weight of fabric and minute 
(MPFs/g min− 1) during pre-washing is higher than during soaping and 
rinsing for all the samples, see Table 3. However, strong positive cor
relations are present between the following metrics: release of MPFs 

(MPFs/min) during pre-washing and during soaping and rinsing (Pear
son correlation coefficient = 90.0%), release of MPFs per weight of 
fabric (MPFs/g) during pre-washing and during soaping and rinsing 
(Pearson correlation coefficient = 86.8%) and release of MPFs per 
weight of fabric and minute of washing (MPFs/g.min− 1) during pre- 
washing and during soaping and rinsing (Pearson correlation coeffi
cient = 95.1%). These results indicate that the samples with the highest 
release of MPFs during the first stage of pre-washing, displayed the 
highest release of MPFs during soaping and rinsing. Therefore, the 
specific characteristics of the fabrics significantly determine the 
behavior of the fabric samples during washing. 

3.2.1. The influence of raw material 
Samples A3-w, PET4-w, and PP-w have plain weave structures and 

have the same or similar thickness and basis weight values. Therefore, 
when these three samples are evaluated, it is noteworthy that although 
A3-w has lower thickness (0.60 mm) and basis weight (365 g/m2) 
values, it releases more MPFs both in pre-washing (1119) and soaping 
and rinsing (1286) stages compared to the other two samples (PP-w 698, 
1063; PET-w 585, 890). In a study conducted by Napper and Thompson 
(2016), it was estimated that 23 MF/g were released from 
polyester-cotton blend fabric, 83 MF/g from polyester fabric and 122 
MF/g microfibers from acrylic fabric. Therefore, it was concluded that 
polyester and acrylic fabrics, which are frequently preferred in the 
clothing industry based on their low cost and durability, may cause less 

Fig. 2. Results of the physical characterization of the samples: (a) thickness and (b) basis weight of the fabrics.  

Table 2 
Average fiber and yarn diameter values of samples.  

ID Fiber diameter (μm) Yarn diameter (mm) 

A1-K 20.0 ± 0.67 0.50 ± 0.04 
A2-K 20.0 ± 1.96 1.00 ± 0.22 
A3-W 10.0 ± 1.33 2.50 ± 0.12 
PA-W 15.0 ± 2.16 0.25 ± 0.70 
PET1-K 10.0 ± 0.69 0.35 ± 0.93 
PET2-K 20.0 ± 1.16 1.50 ± 0.18 
PET3-W 10.0 ± 0.24 0.13 ± 0.98 
PET4-W 15.0 ± 0.54 5.00 ± 0.17 
PP-W 22.5 ± 1.12 3.00 ± 0.57 
RPET-W 10.0 ± 0.29 0.13 ± 0.87  

Table 3 
Results of the washing tests: MPFs released during pre-washing and soaping&rinsing, and total specific release of MPFs per weight unit (MPFs/g) and per weight of 
fabric and minute of washing (MPFs/g min− 1).  

ID pre- 
washing 
(MPFs) 

pre- 
washing 
(MPFs/g) 

pre-washing 
(MPFs/g 
min− 1) 

soaping& 
rinsing 
(MPFs) 

soaping 
&rinsing 
(MPFs/g) 

soaping 
&rinsing 
[MPFs/(g 
min− 1)] 

total 
MPFs 
released 

Total 
MPFs/g 

pre-washing 
(MPFs/g 
min− 1) 

soaping 
&rinsing 
[MPFs/(g 
min− 1)] 

Total 
[MPFs/(g 
min− 1)] 

PET4- 
w 

585 42.51 4.25 890 64.68 1.85 1475 107 4,25 1,85 2,38 

PP-w 698 50.73 5.07 1063 77.25 2.21 1761 128 5 2 2,84 
A3-w 1119 95.80 9.58 1286 110.10 3.15 2405 206 10 3 4,58 
PET2- 

k 
191 17.56 1.76 417 38.33 1.10 608 56 2 1 1,24 

A2-k 714 111.56 11.16 741 115.78 3.31 1455 227 11 3 5,05 
PET1- 

k 
407 63.59 6.36 565 88.28 2.52 972 152 6 3 3,38 

A1-k 160 50.00 5.00 308 96.25 2.75 468 146 5 3 3,25 
PA-w 551 172.19 17.22 508 158.75 4.54 1059 331 17 5 7,35 
PET3- 

w 
365 152.08 15.21 543 226.25 6.46 908 378 15 6 8,41 

RPET- 
w 

416 173.33 17.33 777 323.75 9.25 1193 497 17 9 11,05  
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microfiber release if used in a blend with natural fibers (Napper and 
Thompson, 2016). When comparing PET1-k and A2-k samples in knitted 
fabric structure with the same basis weight (200 g/m2) and thickness 
(0.15 mm) values, it was observed that the A2-k sample with acrylic raw 
material (416 and 777 MPFs) released more microfibers than the PET1-k 
sample with polyester raw material (365 and 543 MPFs) in both pre
washing and soaping&rinsing, respectively. When the results obtained 
from samples with both woven and knitted structures are evaluated, it is 
obvious that samples containing acrylic release more fibers, regardless 
of the structure of the fabrics. It is possible to come across studies in the 
literature stating that acrylic fiber is the fiber with the highest fiber 
release among synthetic fibers (Raja Balasaraswathi & Rathinamoorthy, 
2021). 

When PET3-W and RPET-W samples, both of which have a plain 
weave structure and have exactly the same thickness (0.05 mm) and 
basis weight (75 g/m2) values, are compared, it has been observed that 
the recycled polyester sample releases more microfibers than virgin 
polyester sample, regardless of the washing stages. During the recycling 
process, polyester fiber is subjected to heat and shear degradation, 
which reduces the average molecular weight, the length of the molec
ular chains, and the crystallinity, hence a decrease in the strength of 
recycled polyester. This reduction in mechanical properties is the reason 
why recycled polyester releases more microfibers compared to virgin 
polyester (Julienne et al., 2019; Özkan & Gündoğdu, 2020). Recycled 
polyester recently gained increasing attention from consumers (and 
textile companies) as “environmentally friendly” alternative to virgin 
polyester. However, recycled polyester should be carefully compared 
with the virgin fiber about MPFs’ release across the whole life cycle. 
Future research should explore specific finishing treatments, already 
under investigation for polyamide (De Falco et al., 2018; De Falco et al., 
2019a,b) and the release during use (in air and in household washing 
and tumble drying), as well as the role of detergents and softeners. 
Microfibers are released into the environment at various phases in the 
lifecycle of textiles, such as during manufacturing, processing, use, and 
disposal. Production is responsible for the largest portion (49%) of mi
crofiber release during these stages, while laundering contributes 28% 
and usage contributes 23% (Salvador Cesa et al., 2017; Lim et al., 2022). 

3.2.2. Influence of fiber and yarn properties 
The results of SEM/IMAGE J analyses (Table 2) indicated that the 

fibers’ diameter ranged 10–20 μm for knitted fabrics and 10–23 μm for 
woven fabrics, independently of thickness and basis weight of the fab
rics. PET samples were composed of the finest fibers (diameter was 
about 10 μm for 3 samples out of 5), while other samples showed fiber 
diameters between 10 and 22.5 μm. Considering the yarn structure, the 
samples can be categorized in two groups: one having yarn diameter 
below 0.5 mm (PET1-k, PET3-w, RPET-w, PA-w, A1-k) and another 
above 1 mm (PET2-k, PET4-w, PP-w, A2-k, A3-w). The largest yarn di
ameters (>2 mm) belonged to PP-w, PET4-w, and A3-w, also charac
terized by the chenille yarn structure. 

The relationship between yarn diameter/yarn count and microfiber 
release was related to the number of fibers in the cross-sectional area of 
the yarn. It is interpreted that as the yarn count or yarn diameter in
creases, microfiber release will also increase, as it is thought to contain 
more fibers with the same diameter (Belzagui & Gutiérrez-Bouzán, 
2022; Çeven & Özdemir, 2006). Although a clear comparison cannot be 
made within the scope of the study since the fiber and fabric parameters 
are variable, it can be stated that for all samples except the PET2-k 
sample, samples with a yarn diameter greater than 1 mm cause more 
total MPFs release (in a range of 1455–2405 except PET2-k (608)) than 
samples with a yarn diameter less than 0.5 mm (in a range of 468–1193). 
On the other hand, it is known that the yarn type also affects the yarn 
count, independent of the number of fibers in the yarn cross-section. It is 
seen that especially the samples with a yarn diameter over 2 mm consist 
of chenille yarns with a hairier structure. Chenille fabric is characterized 
by a pile that protrudes all around at right angles, giving it a plush and 

velvety look. This pile is created by the way the chenille yarn is con
structed. The yarn consists of a core wrapped with short lengths of 
thread or yarn, which are then twisted together to form the fuzzy sur
face. This construction method gives chenille fabric its characteristic 
softness and texture (Çeven and Özdemir, 2006). This hairy structure is 
also the reason for the increase in yarn diameter, and these yarns are 
suitable for releasing high amounts of microfibers due to their structure. 

3.2.3. Influence of fabric properties 
The effect of fabric properties on microfiber release was examined 

under two separate headings: physical properties of the fabric such as 
thickness/basis weight and structural properties of the fabric depending 
on the production technology such as knitted and woven. 

In order to examine the effect of basis weight/thickness on the MPFs 
release, A1-k and A2-k samples were compared since they are composed 
of both knitted fabrics and acrylic fibers. The results showed that a 50% 
increase in fabric thickness and a reduplication in basis weight led to a 
210% increase (from 468 to 1455) in total MPFs’ release which corre
sponds to 55% increase in MPF/g. The result that fabrics with higher 
basis weight release more microfibers was also declared by Periyasamy 
(2021). 

On the other hand, it has not been possible to specifically examine 
the effect of knitted and woven fabric structures because it is very 
difficult to obtain samples in which the basis weight/thickness, yarn and 
fiber properties and raw materials are exactly the same in different 
fabric structures. However, the most meaningful comparison can be 
made in PET2-k and PET4-w samples, which have the closest thickness 
(0.50 vs. 0.80 mm) and basis weight (340 vs. 430 g/m2) values. The 
results revealed that the PET2-k sample released significantly less MPFs 
than the PET4-w sample in both prewashing (191 vs. 585) and soap
ing&rinsing (417 vs. 890). This is consistent with literature, which re
ports less MPFs shed by knitted fabrics, compared to woven, due to 
higher flexibility and lower surface rupture during friction (Periyasamy 
& Tehrani-Bagha, 2022) and lower number of fibers per square meter 
((Carney Almroth et al., 2018)Almroth et al., 2017). 

3.2.4. Influence of washing cycle phase 
Within the scope of the study, two different washing phases were 

tested. One of these is the 10-min pre-washing phase, and the other is the 
35-min soaping and rinsing phase. In order to compare these two stages 
in the best possible way without being affected by other variables, the 
unit “MPFs/g min− 1″ was accounted. The results proved that for all 
samples (Table 3), the MPFs released in pre-washing from the unit 
sample weight and unit time is much higher (in a range of 2–17) than the 
MPFs released in soaping and rinsing (in a range of 1–9) consistent with 
other studies (Lim et al., 2022; Napper and Thompson, 2016; Pirc et al., 
2016; Periyasamy & Tehrani-Bagha, 2022; De Falco et al., 2019a,b) 
reported that most MPFs are shed in the first phases of the washing cycle. 

4. Conclusions 

Within the scope of the study, both raw material variables and fabric 
construction properties were varied, and the effects of these parameters 
on MPFs release were examined. On the other hand, pre-washing and 
soaping/rinsing stages were studied separately in order to examine the 
effect of the washing cycle on MPFs release. The highlighted findings are 
as follows.  

• When evaluated on the basis of the raw material used, it was 
concluded that the least microfiber release was observed in the 
samples containing polyester, and the maximum release was 
observed in the sample containing A3-w coded acrylic sample. 
Moreover, recycled polyester has been shown to release more MPFs 
than virgin polyester. This can be explained by the fact that recycled 
polyester, which is exposed to thermo-mechanical effects during 
washing, exhibits lower strength compared to virgin polyester as a 
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result of shortening polymer chains. Although recycling of polymers 
is seen as an environmentalist point of view, the reduced mechanical 
strength with the recycling process should be taken into account and 
attention should be paid to the extra MPFs pollution that it may 
cause.  

• Considering the fabric parameters, it was observed that knitted 
fabrics caused less MPFs release compared to woven fabrics. This is 
thought to be due to the low friction among yarns in knitted fabrics, 
which have a more flexible structure compared to woven fabric. In 
addition, it was concluded that the increase in fabric thickness and 
weight in the compared samples also increased the MPFs release.  

• Finally, pre-washing in washing machines releases almost as much 
microplastic as soaping and rinsing. Thus, eliminating pre-washing 
may reduce the amount of microplastics released by residential 
washing machines. 

The main findings of this study showed that the microfibers released 
from the fabrics could be directly related to both structural properties 
and washing conditions and emphasized that many key issues should be 
considered, from the looseness of the fabric structure to whether the raw 
material used was virgin or not. In addition, the results obtained reveal 
the negative effects of the pre-washing stage applied in household 
washing. This should concern washing machine manufacturers and also 
discloses the need to change consumers’ behavior. 
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